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Crystals and clusters: quaternions and cosines 

by S. H. WALMSLEY 
Chemistry Department, University College London, 

20 Gordon Street, London WClH OAJ, England 

Some aspects of the theory of arrays of rigid molecules are reviewed. Attention is 
focused on the orientation of the molecules. Quaternions are useful for non-linear 
molecules in determining the structure of the arrays and they may be adapted to give 
convenient vibrational displacement coordinates. Direction cosines play a similar 
role for linear molecules. The application of these ideas to molecular crystals is 
discussed and a preliminary analysis of molecular clusters is given. 

1. Introduction 
In dealing with arrays of molecules, it is convenient to take advantage of the 

contrast between the relatively high energies of interaction within a molecule and the 
relative low energies of interaction between molecules. This leads to a simplified model 
in which properties of the array are described in terms of effectively rigid molecules. The 
model may be used to discuss the structure of the array and the vibrational properties of 
the array (the lattice vibrations and the cluster vibrations). 

The rigid-molecule model has the characteristic that angular variables have to be 
included to describe the molecular orientation. In determining structures care must be 
taken to avoid singularities. In determining vibrations suitable orientational displace- 
ments are needed if harmonic-oscillator methods are to be used. 

At first, a single non-linear molecule is considered. The orientation is described first 
with reference to the structure problem and then to the vibrational problem. Both 
involve adaptations of the quaternion parameters. Next, a parallel treatment for a 
single linear molecule is given in terms of the direction cosines of the linear axis. 

The characteristic features of molecular crystals are discussed and finally the 
contrasting case of the molecular cluster is taken up. 

2. Quaternions 
The orientation of a single non-linear molecule is describable in terms of the 

rotation of a set of externally fixed Cartesian axes into a set of Cartesian axes fixed in the 
molecule. This may always be expressed as a single right-handed rotation through an 
angle (0 d P 6 n) about an axis making direction cosines go, qo and io with the externally 
fixed axes. The four quaternion parameters are then defined as 

40 = cos ( P P )  
41 = 50 sin (8P) 
4 2  = 70 sin ( P P )  

They have one independent relationship connecting them: 
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reflecting the fact that only three independent quantities are required to specify the 
orientation. This and other ways of describing rigid-body orientations have been 
discussed by Whittaker (1927): the three Euler angles and the four Cayley-Klein 
parameters. 

In problems of structures of arrays of molecules, the energy is minimized with 
respect to molecular orientation. The three independent Euler angles have singularities 
and it has been shown that this may lead to artificial minima and saddle points. The 
four quaternions may be used as quasi-independent coordinates providing the 
redundancy condition (2) is properly taken into account. The form of the condition is 
equivalent to the equation of a hypersphere of unit radius in four dimensions. Its effect 
may be simulated by adding a penalty function which is strongly minimized on the 
surface of the hypersphere and has the form 

(3) m q ;  + 4: + 42" + q p -  112 

in which K is a positive constant. This method has been fully described by Griewank 
et al. (1 979). 

In the vibrational problem, it is the kinetic energy of orientation on which attention 
is focused. This is most simply written in terms of angular momenta. 

L, is the angular momentum about the molecule fixed axis c1, now chosen to be a 
principal axis of inertia, and I(') is the corresponding moment. This form is ideal for free 
or nearly free rotational motion but is not suitable for the small orientational 
displacements in crystal or cluster vibrations since the angular momentum has no 
properly conjugate coordinate. The quaternions may be adapted to give vibrational 
displacement coordinates. If the externally fixed axis system is chosen to coincide with 
the equilibrium orientation of the molecule, the equilibrium values of the quaternion 
parameters are 

qg= 1, q(:=q;=q:=o (5 )  
This suggests that the three quaternions ql ,  q2 and q3 should be used as independent 
vibrational displacement coordinates and the fourth quaternion qo should be regarded 
as a dependent variable defined by (2). The quantum mechanical operator for the 
kinetic energy of molecular orientation may be shown to be 

2T= qh"PaqO 1Gu,ppqA'2 (6) 
pa is the momentum operator conjugate to qa. The convention of repeated summation 
over repeated Greek suffices is introduced, the possible values being 1,2,3. The matrix 
element G,, is given by 

4G,, = 6,,J'"'q; + E,~pE~~vJ(a)qpqv + E , ~ ~ ( J ( ~ )  - J'")qoq, (7) 
Here J @ )  is the inverse of the moment of inertia I(a). The permutation symbol &,ap takes 
the value 0 unless the three indices all have different values. It takes the value + 1 if they 
are in the cyclic order 123 and - 1 for the order 321. Expansion of the kinetic energy 
operator (6) in powers of the vibrational coordinates gives the harmonic part as the 
leading (coordinate-independent) term with higher terms contributing to anharmonic 
modifications. Further details appear in earlier papers (Markey and Walmsley 1982, 
Walmsley 1984). 
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3. Cosines 
The orientation of a single linear molecule is characterized by the direction cosines 

the molecular axis makes with an externally fixed Cartesian set. The direction cosines 
are related: 

n:+2;+2;=1 (8) 
This expression is strikingly similar to the redundancy condition (2) of the four 
quaternions and the set of direction cosines can be used in a very similar way. 

The structure of an array of linear molecules could be described in terms of 
spherical polar angles but they have similar disadvantages to the Euler angles in the 
non-linear case. The direction cosines can be. used as quasi-independent coordinates 
subject to a penalty function similar to (3). This corresponds to allowing a scaled 
expansion or contraction of the molecule during the minimization, which is effectively 
cancelled by the penalty function. 

In the vibrational problem (Walmsley 1985 a), displacement coordinates are 
defineable by letting the external fixed axis 3 coincide with the equilibrium direction of 
the molecule. The equilibrium values are then 

(9) 20-20- 1 -  2 - 0 ,  2:=1 

As with the quaternions, I 1  and I ,  are chosen as the vibrational displacement 
coordinates and 1, is a dependent variable. The Hamiltonian operator for the 
orientational kinetic energy is then shown to be 

21T= 2 y p a n ;  l(daB - Aanp)pp2y (10) 
The implied summation over the Greek suffices is now confined to the values 1 and 2. 
The moment of inertia is denoted by I and the momentum conjugate to 2, by pa. 
Expansion of the operator up to terms quadratic in A and use of commutation 
relationships leads to the following simplification: 

21T= Papa - P a ~ a ~ f i P ,  + h2 (1 1 )  
The leading term contributes to the harmonic oscillator and the second to the quartic 
anharmonicity. The final constant term can be shown to be of the same order as the 
quartic term in an anharmonic perturbation development. 

4. Crystals 
The structure of molecular crystals and their vibrational properties have been the 

subject of numerous investigations. The books by Kitaigorodskii (1973) and Califano 
et al. (1981) review some of the work. Quaternions have been used for calculations of 
crystal structures involving extended defect regions (Craig et aZ. 1979, Craig and 
Markey 1980, Markey and Walmsley 1980). 

The use of the quaternion-based displacement coordinates for lattice vibrations of 
crystals of rigid molecules requires a modification of the theory summarized in Born 
and Huang (1954) and developed in Horton and Maradudin (1974). The important 
point in the Born and Huang theory in the context of the present paper is that all atomic 
motions are included in the lattice vibration problem, with atomic Cartesian 
displacements as coordinates. The kinetic energy is therefore coordinate-independent. 
The exact form of the kinetic energy is identical with that used in the harmonic 
approximation. In dealing with anharmonicity, there is no additional contribution 
from the kinetic energy; the anharmonic perturbation arises only from the potential 
energy. 
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For lattices of rigid molecules, there are six independent vibrational displacement 
coordinates (five if the molecule is linear). Of these, three are taken as Cartesian 
displacements of the centre of mass and these are treated in the same way as in the 
conventional theory. The other three coordinates (two for linear molecules) are chosen 
as discussed in the preceding two sections. The kinetic energy is now coordinate- 
dependent and an expansion is required for the harmonic approximation and 
anharmonic perturbation. The expanded form has been given explicitly for the linear 
molecule case in 0 3. The more complicated expressions for the non-linear case are to be 
found in an earlier paper (Walmsley 1984). A full account of the lattice dynamical 
aspects of the model is given in another place (Walmsley 1985 b). 

5. Clusters 
The problem of molecular clusters represents a natural extension of the problem of 

molecular crystals. A preliminary sketch of the structure problem is given to illustrate 
the similarities and differences between the two cases. 

One of the key points of difference is the role of the external degrees of freedom. The 
model used for molecular crystals (as indeed for all crystal types) is an infinite crystal 
with cyclical boundary conditions. This has the effect of eliminating crystal surfaces. It 
also complicates the handling of external coordinates. The problem is discussed in 
Born and Huang (1954) and two aspects of its resolution may be noted. 

Firstly, in determining the equilibrium structure of a crystal, it is not sufficient to 
ensure that the forces of all atoms vanish (or for the rigid molecule crystal that the forces 
and torques on all molecules vanish). It is also necessary that the six components of 
macroscopic stress vanish and this in effect determines the dimensions of the unit cell. 

Secondly, in the problem of crystal vibrations, all atomic displacements are 
included in the general case and all molecular changes in position and orientation in the 
molecular crystal case. Three of the external degrees appear as zero roots correspond- 
ing to translation of the whole crystal. These zero-frequency ‘modes’ do not involve 
changes in molecular orientation so that the orientational coordinates described in $6 2 
and 3 are unambiguously vibrational coordinates. A change in molecular orientation 
has no direct connection with a change in orientation of the whole crystal. The three 
external degrees of freedom associated with this whole crystal rotation have as their 
most direct consequence the restriction that the macroscopic stress tensor should be 
symmetric. 

In contrast, a molecular cluster which is not too large has a high surface-to-bulk 
ratio. The external degrees of freedom must be separated in an appropriate way just as 
they must be for a single molecule. The rigid-molecule approximation imposes 
particular restrictions on the way in which this is accomplished. 

For the structure problem, it is only necessary to identify a set of internal 
coordinates which are convenient for minimization. For the vibrational problem and 
dynamical properties in general, the definition of external and internal coordinate is 
more critical: it may be advantageous for example to choose them in such a way as to 
uncouple the hamiltonian in zero order of a particular perturbation scheme. 

The initial coordinates for each molecule consist of three centre-of-mass Cartesian 
coordinates and either four quaternions for non-linear molecules or three direction 
cosines for linear molecules to describe the. orientation. The four quaternions are 
allowed to vary quasi-independently but, as explained in 0 2, describe only three degrees 
of freedom. Similarly the three direction cosines cover only two independent variables. 
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In the structure problem it is convenient to choose one molecule as origin. If this 
molecule is non-linear this gives a complete specification of the external coordinates of 
the cluster. Its centre of mass is taken as the origin of the cluster and its coordinates 
relative to an external fixed point describe the position of the cluster. Similarly, the 
cluster-fixed axes are parallel to the principal inertial axes of the origin molecule, and 
the inclination of these axes to an externally fixed set describe the orientation of the 
cluster. The internal structure is then fully described by the positions and orientations 
of the remaining molecules with respect to the origin molecule. It is immaterial whether 
the molecules are non-linear or linear: the number of internal degrees of freedom is 
exactly right. Quaternions or direction cosines are used for the orientation of each 
molecule as appropriate. The method still works if some or all of the other members of 
the cluster are atoms but in this case each atom contributes only three positional 
coordinates. The key result is that the non-linear at the origin completely defines the 
external coordinates of the cluster. 

If the origin molecule is linear, only five of the six external coordinates are defined: 
three positional and two orientational. This is because only one of the cluster axes is 
fixed by the linear molecule-the direction of the linear molecule itself. A second 
molecule (or atom) can be used to complete the external coordinates. If the origin 
molecule lies along, say, the z axis of the cluster, then the centre of mass of the second 
molecule may be chosen to be in the xz plane. This serves to define the other two 
cluster-fixed axes and hence the external coordinates. The second molecule has only 
two Cartesian coordinates of the centre of mass which are allowed to vary in the 
structure minimization. A third and further molecules (or atoms) fit into the scheme in 
exactly the same way as the previous case. 

The problem of the vibrational properties of a cluster will be discussed in a later 
paper. 
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